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Abstract

We introduce a new feature selection method suitable
for non-monotonic criteria, i.e., for Wrapper-based fea-
ture selection. Inspired by Oscillating Search, the Dy-
namic Oscillating Search: (i) is deterministic, (ii) opti-
mizes subset size, (iii) has built-in preference of smaller
subsets, (iv) has higher optimization performance than
other sequential methods. We show that the new algo-
rithm is capable of over-performing older methods not
only in criterion maximization ability but in some cases
also in obtaining subsets that generalize better.

1. Introduction

In feature selection (FS) the search problem of find-
ing a subset of d features from the given set of D mea-
surements, d < D, with the aim to improve various
properties of pattern recognition systems (i.e., to max-
imize a suitable criterion function) has been of interest
for a long time. Since the optimal methods (exhaus-
tive search or the Branch-and-Bound [2]) are not suit-
able for non-monotonic criteria nor high-dimensional
problems, research has focused on sub-optimal search
methods (for recent overviews see [5], [9]). While many
approaches to sub-optimal FS are possible (e.g., using
evolutionary [3] or Relief-type methods [9]) the family
of sequential search methods [2] [9] has been partic-
ularly popular due to their good compromise between
speed and optimization efficiency, as well as usability
with wide variety of criterion functions.

In this paper we introduce a new method extending
the principle of Oscillating Search (OS) [10]. While
OS requires d to be specified by user (as is the case
with most sequential FS methods), the new method de-
termines the best subset size automatically, with prefer-
ence put on smaller subsets. This ability makes it par-
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Figure 1. The DOS course of search

ticularly suitable for Wrapper [4] [5] type of FS, which
has recently gained lots of interest. Moreover, the new
method has better optimization ability, yielding more
often results closer to optimum. Although stronger op-
timization is naturally accompanied by higher risk of
feature over-selection [8], the new method is capable of
improving classifier generalization as well.

2. Dynamic Oscillating Search

To enable formal description of the Dynamic Oscil-
lating Search (DOS) we follow the notion from [10].
Let Y denote the set of all D features. Let Xk de-
note the current subset of k features. Let J(·) denote
the adopted criterion. The worst feature o-tuple in Xk

should be ideally such a set W̄ ⊂ Xk, that

J(Xk \ W̄ ) = max
W∈W

J(Xk \W ),

where W = {W : W ⊂ Xk, |W | = o}. The best
feature o-tuple for Xk should be ideally such a set B̄ ∈
B, where B = {B : B ⊂ Y \Xk, |B| = o}, that

J(Xk ∪ B̄) = max
B∈B

J(Xk ∪B).
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Figure 2. Simplified diagram of the DOS algorithm assuming o = 1.

In practice we allow sub-optimal finding of the worst
and best o-tuples to save computational time.

2.1. Algorithm Description

Let REMOVE(δ,o) denote the sequence of δ consec-
utive removals of the worst feature o-tuples from a fea-
ture subset Xk to obtain subset Xk−δ·o; let ADD(δ,o)
denote the sequence of δ consecutive additions of the
best feature o-tuples to a feature subset Xk to obtain
subset Xk+δ·o. In the following we assume o is set by
default to o = 1. Higher o values can be specified to
obtain the generalized DOS version.

The idea of the original OS algorithm is to ”oscil-
late”, or repeat consecutive REMOVE(·) and ADD(·)
steps (and vice versa) to possibly improve a working
feature subset of a given size. If the last oscillation cycle
led to no improvement, the number of feature o-tuples
to be consecutively removed and added in one cycle is
allowed to increase up to a user-specified limit ∆. In
our context we denote the working subset the pivot and
let the new algorithm change its size, denoted piv, in the
course of search. This is made possible by introducing a
simple rule: whenever a better global solution is found
(at any oscillation phase), restart the oscillation process
with the new best feature subset taken as the new pivot.

Dynamic Oscillating Search Algorithm
Initialization: Starting from empty set call ADD(3,o) to

obtain the initial subset. Let piv = 3o.

Step 1: Let δ = 1. Let the current subset be the pivot.

Step 2: If δ > piv/o− 1 then go to Step 5.

Step 3: REMOVE(δ,o). If the best of intermediate sub-
sets Xk, k = piv − o, piv − 2o, . . . , piv − δo
yields higher criterion value than the so-far best
(or equal with smaller subset size), go to Step 1.

Step 4: ADD(δ,o). If the best of intermediate subsets
Xk, k = piv−(δ−1)o, piv−(δ−2)o, . . . , piv
yields higher criterion value than the so-far best
(or equal with smaller subset size), go to Step 1.

Step 5: If δ > (D − piv)/o then go to Step 8.

Step 6: ADD(δ,o). If the best of intermediate subsets
Xk, k = piv+ o, piv+ 2o, . . . , piv+ δo yields
higher criterion value than the so-far best (or
equal with smaller subset size), go to Step 1.

Step 7: REMOVE(δ,o). If the best of intermediate sub-
sets Xk, k = piv + (δ − 1)o, piv + (δ −
2)o, . . . , piv yields higher criterion value than
the so-far best (or equal with smaller subset
size), go to Step 1.

Step 8: No improvement in previous oscillation cycle.
Let δ = δ + 1.

Step 9: If δ > ∆ then STOP, else go to Step 2.

An alternative explanation of the same DOS principle
(assuming for simplicity o = 1) is given in Fig. 2.



2.2. New Algorithm Properties

In the course of search DOS generates a sequence of
solutions with ascending criterion values (while smaller
subsets are preferred to larger subsets). The search time
vs. closeness-to-optimum trade-off can thus be handled
by means of pre-mature search interruption.

The number of criterion evaluations is in the O(n3)
order of magnitude. Nevertheless, the total search time
depends heavily on the chosen ∆ value, on particular
data and criterion settings, and on the unpredictable
number of oscillation cycle restarts that take place af-
ter each solution improvement. In our experiments (see
later) DOS run roughly up to 10× slower than SFFS.

3. Evaluating FS Methods’ Performance

In older papers the prevailing approach to FS method
performance assessment was to evaluate the ability to
find optimum, or to get as close to optimum as possi-
ble, with respect to some criterion function defined to
distinguish classes in classification tasks or to fit data in
approximation tasks. Recently, emphasis is put on as-
sessing the impact of FS on generalization performance,
i.e., the ability of the devised decision rule to perform
well on independent data. It has been shown that simi-
larly to classifier over-training the effect of feature over-
selection can hinder the performance of pattern recog-
nition system [8]; especially with small-sample or high-
dimensional problems.

We evaluate our new method from both perspectives
– its optimization performance and its impact on clas-
sification performance with independent test data. To
enable this evaluation we employ the so-called 2-Tier
Cross-Validation (CV) process, consisting of outer and
inner CV loops. The purpose of the outer loop (to be
denoted O-CV) is to put aside part of the data for in-
dependent testing, while the inner loop (to be denoted
I-CV) is used on the remaining data in the course of FS
process to evaluate classification performance (the ac-
tual FS criterion).

3.1. Experiments

We compare the DOS algorithm (unrestricted, i.e.,
∆ = D) with standard sequential methods: Sequen-
tial Forward Selection (SFS) [2], Sequential Forward
Floating Selection (SFFS) [7] and OS (individually best
initialization, ∆ = 1) [10]. In case of methods that se-
lect subsets of given size d we repeated the search for
each d = 1, . . . , D to eventually choose the best over-
all result. We used the accuracy of various classifiers as
criterion function: Bayesian classifier assuming Gauss

Table 1. Mammo data experiments (5-f.CV)
Crit. Meth. I-CV O-CV Size Time(m)
Gauss SFS 0.799 0.607 12.2 02:31

SFFS 0.848 0.570 12 12:30
OS 0.815 0.605 7.8 24:18
DOS 0.851 0.585 7.8 47:57
full 0.663 65

5-NN SFS 0.883 0.746 16.4 00:09
SFFS 0.930 0.838 6 00:59
OS 0.921 0.803 5.8 01:31
DOS 0.936 0.827 7.2 03:53
full 0.610 65

SVM SFS 0.924 0.838 25.4 00:26
SFFS 0.950 0.872 9.6 01:36
OS 0.921 0.757 22.6 05:01
DOS 0.953 0.860 8.6 12:57
full 0.816 65

Table 2. Wine data experiments (10-f.CV)
Crit. Meth. I-CV O-CV Size Time(m)
Gauss SFS 0.598 0.513 3.1 00:00

SFFS 0.634 0.607 3.9 00:03
OS 0.640 0.624 3.5 00:05
DOS 0.647 0.657 3.8 00:17
full 0.431 13

5-NN SFS 0.986 0.959 7.3 00:01
SFFS 0.987 0.971 7 00:04
OS 0.984 0.959 6.8 00:11
DOS 0.988 0.971 6.8 00:28
full 0.949 13

SVM SFS 0.981 0.966 7.8 00:15
SFFS 0.985 0.966 8.3 00:50
OS 0.988 0.956 8.4 02:03
DOS 0.988 0.966 8.7 02:18
full 0.983 13

distribution, 5-Nearest Neighbor and SVM with RBF
kernel [1]. We used three standard datasets [6] of vari-
ous dimensionalities: Mammo data (65 dim., 2 classes:
57 benign and 29 malignant samples), WDBC data (30
dim., 2 classes: 357 benign and 212 malignant samples)
and Wine data (13 dim., 3 classes: 59, 71 and 48 wine
grape samples). Both the I-CV and O-CV loops run 5-
fold with the higher-dimensional Mammo data and 10-
fold with the WDBC and Wine data.

3.2. Results

The results of our experiments are collected in Ta-
bles 1 to 3. Each table contains three sections gath-
ering results for one type of classifier (criterion func-



Table 3. WDBC data experiments (10-f.CV)
Crit. Meth. I-CV O-CV Size Time(h)
Gauss SFS 0.962 0.933 10.8 00:00

SFFS 0.972 0.942 10.6 00:03
OS 0.970 0.940 9.9 00:06
DOS 0.973 0.951 10.7 00:06
full 0.945 30

5-NN SFS 0.978 0.967 12.9 00:01
SFFS 0.982 0.968 16.4 00:09
OS 0.981 0.970 15.9 00:22
DOS 0.983 0.958 13.6 00:36
full 0.968 30

SVM SFS 0.979 0.970 18.5 00:05
SFFS 0.982 0.968 16.2 00:23
OS 0.981 0.974 16.7 00:58
DOS 0.983 0.968 12.8 01:38
full 0.972 30

tion). The main information of interest is in the column
I-CV, showing the maximum criterion value (classifica-
tion accuracy) yielded by each FS method in the inner
CV loop, and O-CV, showing the respective classifica-
tion accuracy on independent test data.

For better overview we have created a summary in
form of graphs in Figure 3. The graphs show the re-
sults of tested FS methods averaged over each tested
classifier-dataset combination. The left graph shows in
light gray the methods’ optimization performance, or
the ”dependent” achieved classification accuracy (cor-
responds to I-CV column in tables), in black the respec-
tive accuracy on independent test data (O-CV in tables).
The right graph shows the average yielded subset size.

The following properties of the Dynamic Oscillating
Search can be observed: (i) it constantly outperforms
other tested methods in the sense of criterion maximiza-
tion ability (I-CV), (ii) it tends to produce the smallest
feature subsets, (iii) its impact on classifier performance
on unknown data varies depending on data and classifier
used – in some cases it yields the best results.

4 Conclusion

We have introduced the new Dynamic Oscillating
Search FS method suitable for Wrapper search setting.
It has been shown to bring constant improvement in op-
timization performance over previous sequential meth-
ods. The negative effect of feature over-selection has
been investigated experimentally. Despite its high op-
timization performance the new DOS has been shown
capable of yielding the best classification accuracy on
independent test data in several experiments.
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Figure 3. Experimental results summa-
rized.

The new method has a built-in mechanism to pre-
fer smaller subset sizes throughout the course of search.
The DOS has been experimentally shown to yield
smaller subsets than other comparable methods without
degrading pattern recognition system performance.
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